Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-(4-Fluoroanilino)-*N*-(4-fluorophenyl)-3-nitrobenzamide

Yong Wang,^a* Kaiqing Fan,^b Chenghong Li^a and Changhua Ge^a

^aSchool of Pharmaceutical and Chemical Engineering, Taizhou University, Linhai 317000, People's Republic of China, and ^bAgronomy Department, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400 Jiangsu, People's Republic of China

Correspondence e-mail: yutaitang@hotmail.com

Received 16 September 2010; accepted 11 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.058; wR factor = 0.155; data-to-parameter ratio = 12.1.

In the title compound, $C_{19}H_{13}F_2N_3O_3$, the anilinobenzamide unit is essentially planar, with a maximum deviation of 0.036 (3) Å. The nitro group and the benzene ring form dihedral angles of 9.6 (5)and 62.20 (8)°, respectively, with the anilinobenzamide unit. An intramolecular N-H···O interaction occurs. In the crystal, molecules are linked by weak intermolecular C-H···O, N-H···O and C-H···F hydrogen bonds, which stabilize the structure.

Related literature

For comparison of bond lengths, see: Allen *et al.* (1987). For the synthetic procedure, see: Schelz & Inst (1978).

Experimental

Crystal data $C_{19}H_{13}F_2N_3O_3$ $M_r = 369.32$ Triclinic, $P\overline{1}$ a = 7.8510 (16) Å

b	= 8.2720 (17) Å
с	= 13.835 (3) Å
α	= 74.75 (3)°
β	= 85.67 (3)°

 $\gamma = 70.76 (3)^{\circ}$ $V = 818.4 (3) \text{ Å}^3$ Z = 2Mo *K* α radiation

Data collection

Enrat–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.965, T_{\max} = 0.988$
3198 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ 245 parameters $wR(F^2) = 0.155$ H-atom parameters constrainedS = 1.00 $\Delta \rho_{max} = 0.16$ e Å $^{-3}$ 2962 reflections $\Delta \rho_{min} = -0.18$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1A\cdots O3^{i}$	0.86	2.37	3.185 (4)	158
$N2-H2A\cdots O2$	0.86	1.98	2.636 (4)	132
$C2-H2B\cdots O3^{i}$	0.93	2.40	3.240 (5)	151
C10−H10A···F1 ⁱⁱ	0.93	2.53	3.205 (4)	130
$C15 - H15A \cdots O1^{iii}$	0.93	2.55	3.454 (4)	164
$C16-H16A\cdots F2^{iv}$	0.93	2.39	3.272 (5)	158

Symmetry codes: (i) x, y - 1, z; (ii) -x + 1, -y, -z; (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y - 1, -z + 1.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1994); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Shan Liu of Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2329).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Schelz, D. & Inst, F. (1978). Helv. Chim. Acta, 61, 2452–2462.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

 $\mu = 0.12 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.10$ mm

2962 independent reflections

1559 reflections with $I > 2\sigma(I)$

3 standard reflections every 200

intensity decay: 1%

T = 293 K

 $R_{\rm int} = 0.026$

reflections

supplementary materials

Acta Cryst. (2010). E66, o2909 [doi:10.1107/S1600536810040687]

4-(4-Fluoroanilino)-N-(4-fluorophenyl)-3-nitrobenzamide

Y. Wang, K. Fan, C. Li and C. Ge

Comment

The crystal structure of the title compound, (I), is presented in this article. In the title molecule (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The phenylaminobenzamide moiety (C1–C13/N1/O1) is essentially planar with maximum deviation of any atom being 0.036 (3) Å for C11 with F2 lying 0.109 (4) Å out of its plane, nitro group (N3/O2/O3) titled at an angle 9.6 (5)° from its plane and the phenyl ring (C14–C19) inclined at 62.20 (8)° with its plane. In the crystal structure, weak intermolecular C—H···O, N—H···O and C—H···F hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in stabilizing the structure.

Experimental

4-Chloro-3-nitrobenzamide (4.0 g, 0.02 mol) was heated in 4-fluorobenzenamine (10 ml) for 18 h at 403 K. On completion of the reaction (TLC control) was added ethanol (50 ml), at room temperature. The red precipitate thus formed was filtered, washed with cold ethanol (2×15 ml), dried over sodium sulfate to provide 5.8 g (79%) of (I) (Schelz & Inst, 1978). The compound (I) was purified by crystallizing from methanol. The crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of a methanol solution.

Refinement

H atoms were positioned geometrically, with N—H = 0.86 and C—H = 0.93 Å, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C/N)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.

Fig. 2. A packing diagram of (I). The intermolecular hydrogen bonds are shown as dashed lines.

4-(4-Fluoroanilino)-N-(4-fluorophenyl)-3-nitrobenzamide

Crystal data

$C_{19}H_{13}F_2N_3O_3$	Z = 2
$M_r = 369.32$	F(000) = 380
Triclinic, <i>P</i> T	$D_{\rm x} = 1.499 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.8510 (16) Å	Cell parameters from 25 reflections
b = 8.2720 (17) Å	$\theta = 9-12^{\circ}$
c = 13.835 (3) Å	$\mu = 0.12 \text{ mm}^{-1}$
$\alpha = 74.75 \ (3)^{\circ}$	T = 293 K
$\beta = 85.67 \ (3)^{\circ}$	Block, colourless
$\gamma = 70.76 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
V = 818.4 (3) Å ³	

Data collection

Enraf–Nonius CAD-4 diffractometer	1559 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.026$
graphite	$\theta_{\text{max}} = 25.3^{\circ}, \theta_{\text{min}} = 1.5^{\circ}$
ω and 2θ scans	$h = 0 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$k = -9 \rightarrow 9$
$T_{\min} = 0.965, \ T_{\max} = 0.988$	$l = -16 \rightarrow 16$
3198 measured reflections	3 standard reflections every 200 reflections
2962 independent reflections	intensity decay: 1%

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.155$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.065P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.00	$(\Delta/\sigma)_{max} < 0.001$
2962 reflections	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
245 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct E methods

Extinction coefficient: 0.021 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y F1 0.7511 (3) 0.0655 (3) 0.0823(8)-0.12706(14)N1 0.1978 (4) -0.2157 (3) 0.58538 (17) 0.0468 (7) H1A 0.2383 0.056* -0.26520.5372 F2 -0.0468(3)-0.6359(3)0.90592 (15) 0.0839(8)C1 0.0848 (6) -0.5958(5)0.7467 (3) 0.0687 (12) H1C 0.0888 -0.70830.082* 0.7443 N2 0.4401 (4) 0.0511 (8) 0.3033(3)0.20096 (18) H2A 0.4232 0.4141 0.1934 0.061* 01 0.1462(4)0.0382(3)0.63333 (16) 0.0645 (8) C2 0.1458 (5) -0.4877(4)0.6679 (3) 0.0618(11) H2B 0.1932 -0.52900.6120 0.074* 02 0.3708 (4) 0.29073 (19) 0.0787 (9) 0.5620(3)C3 0.1378 (4) -0.3197(4)0.6703 (2) 0.0424 (8) N3 0.0579 (9) 0.3373 (4) 0.4670(4) 0.3685 (2) C4 0.0683(5)-0.2610(5)0.7541 (2) 0.0515 (9) H4A 0.0612 -0.14780.7569 0.062* O3 0.3066 (5) 0.5176 (4) 0.4448 (2) 0.1081 (13) C5 0.0093 (5) -0.3689(5)0.8339(2)0.0573 (10) H5A -0.0360-0.33010.8909 0.069* C6 0.0189 (5) -0.5329(5)0.8276 (3) 0.0577 (10) C7 0.1996 (4) -0.0465(4)0.5702 (2) 0.0413 (8) C8 0.2697 (4) 0.0325 (4) 0.4724 (2) 0.0367 (7) C9 0.3296 (4) -0.0471 (4) 0.3930(2) 0.0458 (9) H9A 0.3996 0.055* 0.3288 -0.1616C10 0.3893 (4) 0.0400 (4) 0.3058 (2) 0.0463 (9) H10A 0.4292 -0.01780.2550 0.056* C11 0.3924 (4) 0.2150 (4) 0.2904(2)0.0408 (8) C12 0.3347 (4) 0.2909 (4) 0.3723(2)0.0411 (8) C13 0.2751 (4) 0.2014 (4) 0.4597 (2) 0.0417 (8) H13A 0.2376 0.2568 0.5116 0.050* C14 0.5150 (5) 0.2322 (4) 0.1184 (2) 0.0422 (8) C15 0.6711 (5) 0.0901 (5) 0.1283(2)0.0518 (9) H15A 0.7234 0.0318 0.1914 0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C16	0.7504 (5)	0.0333 (5)	0.0459 (3)	0.0574 (10)
H16A	0.8563	-0.0623	0.0524	0.069*
C17	0.6702 (6)	0.1204 (5)	-0.0458 (3)	0.0554 (10)
C18	0.5142 (5)	0.2600 (5)	-0.0589 (2)	0.0566 (10)
H18A	0.4617	0.3155	-0.1221	0.068*
C19	0.4358 (5)	0.3171 (4)	0.0244 (2)	0.0495 (9)
H19A	0.3298	0.4126	0.0173	0.059*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.114 (2)	0.0861 (17)	0.0570 (13)	-0.0353 (15)	0.0258 (13)	-0.0374 (12)
N1	0.065 (2)	0.0442 (16)	0.0382 (15)	-0.0275 (15)	0.0133 (13)	-0.0135 (12)
F2	0.108 (2)	0.0535 (14)	0.0715 (14)	-0.0251 (13)	0.0345 (13)	0.0043 (11)
C1	0.094 (3)	0.038 (2)	0.068 (3)	-0.020 (2)	0.017 (2)	-0.0092 (19)
N2	0.078 (2)	0.0423 (16)	0.0389 (16)	-0.0291 (16)	0.0172 (15)	-0.0130 (13)
01	0.104 (2)	0.0492 (15)	0.0487 (14)	-0.0345 (15)	0.0227 (14)	-0.0192 (12)
C2	0.090 (3)	0.044 (2)	0.050 (2)	-0.024 (2)	0.020 (2)	-0.0121 (17)
02	0.136 (3)	0.0554 (16)	0.0587 (16)	-0.0535 (17)	0.0343 (16)	-0.0184 (13)
C3	0.052 (2)	0.042 (2)	0.0342 (18)	-0.0201 (17)	0.0066 (16)	-0.0069 (15)
N3	0.089 (3)	0.0494 (18)	0.0465 (18)	-0.0370 (18)	0.0176 (17)	-0.0165 (16)
C4	0.063 (3)	0.055 (2)	0.044 (2)	-0.031 (2)	0.0094 (18)	-0.0129 (17)
O3	0.225 (4)	0.072 (2)	0.0626 (18)	-0.087 (2)	0.050 (2)	-0.0403 (16)
C5	0.068 (3)	0.064 (3)	0.043 (2)	-0.028 (2)	0.0144 (18)	-0.0145 (18)
C6	0.062 (3)	0.046 (2)	0.049 (2)	-0.0125 (19)	0.0141 (18)	0.0043 (17)
C7	0.045 (2)	0.0400 (19)	0.0396 (18)	-0.0162 (17)	0.0017 (16)	-0.0091 (16)
C8	0.040 (2)	0.0355 (18)	0.0351 (17)	-0.0139 (15)	-0.0003 (14)	-0.0072 (14)
C9	0.061 (2)	0.043 (2)	0.0426 (19)	-0.0269 (18)	0.0063 (17)	-0.0134 (15)
C10	0.060 (2)	0.046 (2)	0.0427 (19)	-0.0260 (18)	0.0105 (17)	-0.0201 (16)
C11	0.044 (2)	0.0385 (19)	0.0412 (19)	-0.0149 (16)	0.0005 (15)	-0.0106 (15)
C12	0.053 (2)	0.0365 (18)	0.0384 (18)	-0.0195 (17)	0.0029 (16)	-0.0110 (15)
C13	0.053 (2)	0.0418 (19)	0.0339 (17)	-0.0186 (17)	0.0030 (15)	-0.0116 (14)
C14	0.060 (2)	0.0416 (19)	0.0353 (18)	-0.0296 (19)	0.0097 (16)	-0.0125 (15)
C15	0.062 (3)	0.050 (2)	0.043 (2)	-0.020 (2)	0.0041 (18)	-0.0094 (16)
C16	0.064 (3)	0.049 (2)	0.060 (2)	-0.0173 (19)	0.014 (2)	-0.0197 (19)
C17	0.082 (3)	0.060 (2)	0.041 (2)	-0.040 (2)	0.022 (2)	-0.0237 (18)
C18	0.073 (3)	0.065 (3)	0.039 (2)	-0.036 (2)	0.0023 (19)	-0.0083 (18)
C19	0.050(2)	0.046 (2)	0.049 (2)	-0.0173 (18)	0.0048 (18)	-0.0066 (17)

Geometric parameters (Å, °)

F1—C17	1.358 (3)	С5—Н5А	0.9300
N1—C7	1.365 (4)	С7—С8	1.490 (4)
N1—C3	1.413 (3)	C8—C13	1.376 (4)
N1—H1A	0.8600	C8—C9	1.400 (4)
F2—C6	1.373 (4)	C9—C10	1.369 (4)
C1—C6	1.354 (5)	С9—Н9А	0.9300
C1—C2	1.382 (4)	C10-C11	1.415 (4)
C1—H1C	0.9300	C10—H10A	0.9300

N2—C11	1.357 (4)	C11—C12	1.412 (4)
N2—C14	1.421 (4)	C12—C13	1.378 (4)
N2—H2A	0.8600	C13—H13A	0.9300
O1—C7	1.225 (3)	C14—C15	1.376 (4)
C2—C3	1.379 (4)	C14—C19	1.388 (4)
C2—H2B	0.9300	C15—C16	1.375 (4)
O2—N3	1.222 (3)	C15—H15A	0.9300
C3—C4	1.380 (4)	C16—C17	1.366 (5)
N3—O3	1.214 (3)	C16—H16A	0.9300
N3—C12	1.451 (4)	C17—C18	1.363 (5)
C4—C5	1.381 (4)	C18—C19	1.384 (4)
C4—H4A	0.9300	C18—H18A	0.9300
C5—C6	1.360 (5)	C19—H19A	0.9300
C7—N1—C3	128.1 (3)	C10—C9—C8	121.5 (3)
C7—N1—H1A	115.9	С10—С9—Н9А	119.3
C3—N1—H1A	115.9	С8—С9—Н9А	119.3
C6—C1—C2	117.9 (4)	C9—C10—C11	122.1 (3)
C6—C1—H1C	121.0	C9—C10—H10A	118.9
C2—C1—H1C	121.0	C11-C10-H10A	118.9
C11—N2—C14	126.9 (3)	N2-C11-C12	123.5 (3)
C11—N2—H2A	116.6	N2-C11-C10	121.2 (3)
C14—N2—H2A	116.6	C12-C11-C10	115.2 (3)
C3—C2—C1	121.4 (3)	C13—C12—C11	121.9 (3)
С3—С2—Н2В	119.3	C13—C12—N3	116.8 (3)
C1—C2—H2B	119.3	C11—C12—N3	121.2 (3)
C2—C3—C4	118.6 (3)	C8—C13—C12	121.9 (3)
C2—C3—N1	117.8 (3)	C8—C13—H13A	119.0
C4—C3—N1	123.6 (3)	С12—С13—Н13А	119.0
O3—N3—O2	120.7 (3)	C15—C14—C19	119.5 (3)
O3—N3—C12	118.4 (3)	C15—C14—N2	121.5 (3)
O2—N3—C12	120.9 (3)	C19—C14—N2	118.8 (3)
C3—C4—C5	120.5 (3)	C16-C15-C14	120.6 (3)
C3—C4—H4A	119.7	C16-C15-H15A	119.7
C5—C4—H4A	119.7	C14—C15—H15A	119.7
C6—C5—C4	118.7 (3)	C17—C16—C15	118.5 (4)
С6—С5—Н5А	120.7	C17—C16—H16A	120.7
C4—C5—H5A	120.7	C15—C16—H16A	120.7
C1—C6—C5	122.9 (3)	F1-C17-C18	119.1 (3)
C1—C6—F2	119.1 (3)	F1—C17—C16	118.1 (4)
C5—C6—F2	117.9 (3)	C18—C17—C16	122.8 (3)
O1—C7—N1	122.2 (3)	C17—C18—C19	118.3 (3)
O1—C7—C8	120.9 (3)	C17—C18—H18A	120.8
N1—C7—C8	116.9 (3)	C19-C18-H18A	120.8
C13—C8—C9	117.3 (3)	C18—C19—C14	120.2 (3)
C13—C8—C7	115.9 (3)	C18—C19—H19A	119.9
C9—C8—C7	126.8 (3)	C14—C19—H19A	119.9
C6—C1—C2—C3	-0.9 (6)	N2-C11-C12-C13	175.3 (3)
C1—C2—C3—C4	0.5 (6)	C10-C11-C12-C13	-1.7 (5)

supplementary materials

C1—C2—C3—N1	-178.1 (3)	N2-C11-C12-N3	-5.3 (5)
C7—N1—C3—C2	178.7 (3)	C10-C11-C12-N3	177.6 (3)
C7—N1—C3—C4	0.2 (5)	O3—N3—C12—C13	7.8 (5)
C2—C3—C4—C5	0.4 (5)	O2—N3—C12—C13	-172.6 (3)
N1—C3—C4—C5	178.9 (3)	O3—N3—C12—C11	-171.5 (4)
C3—C4—C5—C6	-0.9 (5)	O2—N3—C12—C11	8.1 (5)
C2—C1—C6—C5	0.5 (6)	C9—C8—C13—C12	0.8 (5)
C2C1C6F2	178.4 (3)	C7—C8—C13—C12	-179.1 (3)
C4—C5—C6—C1	0.4 (6)	C11—C12—C13—C8	0.4 (5)
C4—C5—C6—F2	-177.5 (3)	N3-C12-C13-C8	-178.9 (3)
C3—N1—C7—O1	0.3 (5)	C11—N2—C14—C15	-56.2 (5)
C3—N1—C7—C8	-179.6 (3)	C11—N2—C14—C19	128.7 (3)
O1—C7—C8—C13	1.9 (5)	C19—C14—C15—C16	1.0 (5)
N1—C7—C8—C13	-178.2 (3)	N2-C14-C15-C16	-174.0 (3)
O1—C7—C8—C9	-178.0 (3)	C14-C15-C16-C17	-0.4 (5)
N1—C7—C8—C9	1.9 (5)	C15-C16-C17-F1	178.9 (3)
C13-C8-C9-C10	-0.7 (5)	C15-C16-C17-C18	-0.6 (5)
C7—C8—C9—C10	179.2 (3)	F1-C17-C18-C19	-178.4 (3)
C8—C9—C10—C11	-0.6 (5)	C16—C17—C18—C19	1.0 (5)
C14—N2—C11—C12	173.7 (3)	C17-C18-C19-C14	-0.4 (5)
C14-N2-C11-C10	-9.4 (5)	C15-C14-C19-C18	-0.5 (5)
C9—C10—C11—N2	-175.3 (3)	N2-C14-C19-C18	174.6 (3)
C9—C10—C11—C12	1.8 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1A····O3 ⁱ	0.86	2.37	3.185 (4)	158
N2—H2A···O2	0.86	1.98	2.636 (4)	132
N2—H2A…N3	0.86	2.58	2.917 (4)	105
C2—H2B···O3 ⁱ	0.93	2.40	3.240 (5)	151
C4—H4A…O1	0.93	2.20	2.821 (4)	123
C10—H10A…F1 ⁱⁱ	0.93	2.53	3.205 (4)	130
C13—H13A…O1	0.93	2.39	2.728 (4)	102
С13—Н13А…О3	0.93	2.33	2.661 (5)	100
C15—H15A…O1 ⁱⁱⁱ	0.93	2.55	3.454 (4)	164
C16—H16A···F2 ^{iv}	0.93	2.39	3.272 (5)	158

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1, -*y*, -*z*; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*+1, -*y*-1, -*z*+1.

